How to use this glossary:

LOOK (Read through the examples, and make sure you understand the information, and the examples)

<u>COVER</u> the whole thing (try to remember all columns, including the number of objects, and their names)

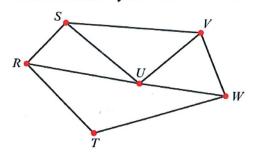
WRITE out all the columns on a blank sheet of paper (The examples should not be the same every time!)

<u>CHECK</u> your work (make sure you are LOOKing properly and that you've captured every part of the definition)

[1] Getting around Graphs

<u>Object</u>	<u>Definition</u>
Walk	A sequence of edges, in which the <u>end of each edge is the beginning of the next</u> (except the last edge).
Trail	A <u>walk</u> in which <u>no edge</u> is <u>repeated</u> .
Path	A <u>trail</u> in which <u>no vertex</u> is <u>repeated</u> .
Cycle	A <u>path</u> which is a <u>closed</u> (the final vertex is also the start vertex).
Hamiltonian Cycle	A <u>cycle</u> which <u>visits every vertex</u> . (Since it is also a path, each vertex is visited precisely once).

In the graph below, an example of:


• a **walk** is *RSUWVU* ————— It is ok to include a vertex or an edge more than once on a walk.

• a path is RSUVW

• a trail is RUSVUW

• a **cycle** is *RSUR* — It is not necessary to include every vertex in a cycle.

• a Hamiltonian cycle is RSUVWTR.

* Note that all Hamiltonian Cycles are Cycles, all Cycles are Paths, all Paths are Trails, and all Trails are Walks.

(So all Cycles are Walks etc.)

[2] Adjectives to Describe Graphs

· Order (of a vertex) is the number of (also known as arcs which connect degree or valency) to it.

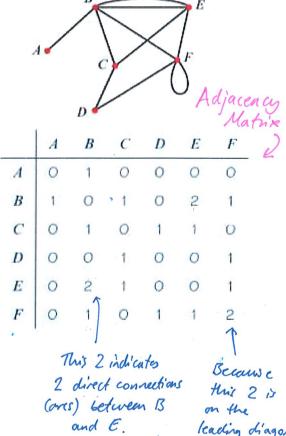
		Noches Edges Loops Repented
Graph	A graph consists of a discrete number of vertices/nodes, which are connected by a discrete number of edges/arcs. *This example also illustrates a loop.	Graph 1 Graph 2 Graph 3
Simple Graph	A graph in which there are no loops and in which there is no more than one edge connecting any pair of vertices.	Simple Simple Not Simple X (loops and multiple repeats of the same exc)
Directed Graph NB: There is such a think as the in-degree and out-degree, but its not a	A graph in which at least one edge has a direction associated with it.	both ways possible!
Weighted Graph	A graph in which <u>all edges</u> <u>have a weighting</u> associated with them.	WEIGHTED NOT WEIGHTED
Connected Graph	A graph is connected if <u>a path</u> <u>exists between every pair</u> of vertices	CONNECTED NOT CONNECTED
Complete Graph	A complete graph is a <u>simple</u> graph in which <u>every pair of</u> vertices is connected by an edge.	K ₃ K ₄ K ₅ and so on!
Isomorphic Graphs	Two graphs are isomorphic if one can be stretched, twisted or otherwise distorted into the other. In the diagram (right), graphs 1 and 2 are isomorphic to one another, but graph 3 is not isomorphic to them.	Aso: The ettern correspond! A=T B=S C=P D=R E=Q ISOMORPHIC TO EACHOTHER! Not isomorphic to the other two.
Planar Graph	A graph which can be drawn without any edges crossing.	H COPE = COPE

[3] Further Types of Graph

Subgraph	If you delete vertices/edges from a graph (but don't add any), the resulting object is a subgraph of the original graph.	Original Graph Subgraph Subgraph Not a Subgraph
Tree	A tree is a simple connected graph with no cycles.	
Spanning Tree	A subgraph which includes all the vertices of the original graph (spans it), and is also a tree.	Original Graph Spannin Tree
Minimum Spanning Tree (MST)	A spanning tree of a weighted graph, such that the total length of its arcs is as small as possible.	18 22 3

[4] Other Objects

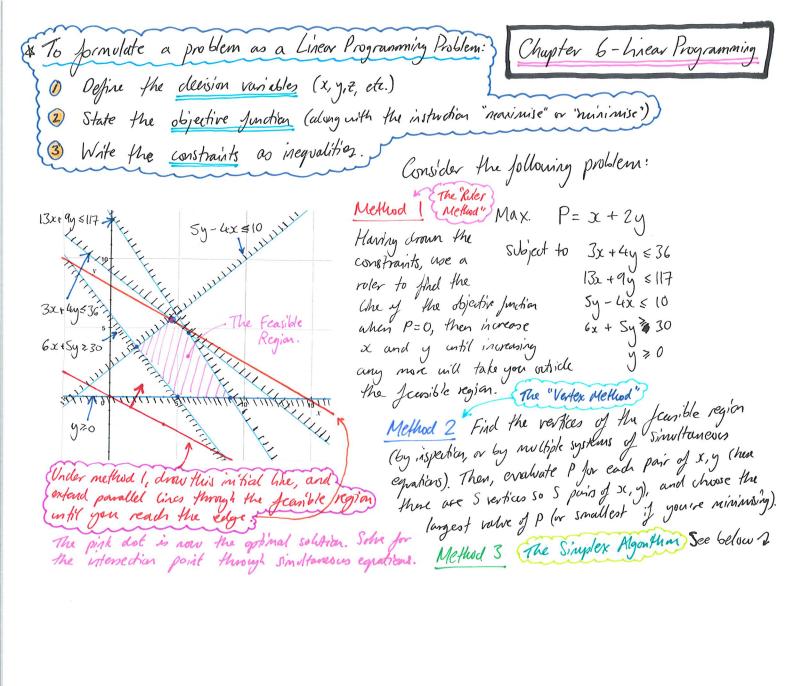
Adjacency Matrix (Incidence Matrix) Distance Matrix	Each entry in an adjacency matrix describes the number of arcs joining the corresponding vertices. The entries represent the weight of each arc, not the number of arcs.
Euler's Handshaking Lemma	For any undirected graph: \[\sum_{v \in V} \text{deg(v)} = 2 E \]

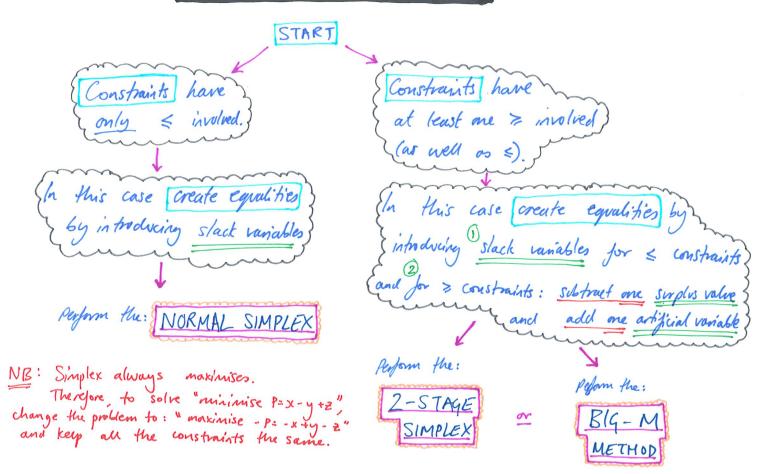

A $\frac{17}{18}$ $\frac{B}{20}$ $\frac{23}{D}$ ERef. g all vertices all edges

E = set g all edges

Distance Matrix

	A	\boldsymbol{B}	C	D	\boldsymbol{E}	4
A			18			
\boldsymbol{B}	17 18		15	19	23	*
В С	18	15	names.	20	-	
D		19	20		16	
\boldsymbol{E}		23		16	was a second	


* If the matrix
is not symmetrical,
then the retwork
is directed (and
visa versa).


leading diagonal, it indicates the

presence of a loop.

Chapter 7 - The Simplex Algorithm

